organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Amino-1-(3,4-dimethoxyphenyl)-9,10dihydrophenanthrene-2,4-dicarbonitrile

Abdullah M. Asiri,^{a,b}‡ Hassan M. Faidallah,^a Khalid A. Alamry,^a Seik Weng Ng^{c,a} and Edward R. T. Tiekink^c*

^aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, ^bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 13 March 2012; accepted 14 March 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.055; wR factor = 0.136; data-to-parameter ratio = 15.8.

In the title compound, C₂₄H₁₉N₃O₂, the partially saturated ring adopts a distorted half-chair conformation with the methylene-C atom closest to the aminobenzene ring lying 0.664(3) Å out of the plane defined by the five remaining atoms (r.m.s. deviation = 0.1429 Å. The dihedral angle $[32.01 (10)^{\circ}]$ between the benzene rings on either side of this ring indicates a significant fold in this part of the molecule. The dimethoxy-substituted benzene ring is almost orthogonal to the benzene ring to which it is attached [dihedral angle = $72.03 (9)^{\circ}$]. The molecule has been observed previously as the major component of a 1:19 co-crystal with 2-amino-4-(3,4dimethoxyphenyl)-5,6-dihydrobenzo[ha]quinoline-3-carbonitrile [Asiri et al. (2011). Acta Cryst. E67, o2873-o2873]. Supramolecular chains with base vector [201] are formed in the crystal structure via $N-H \cdot \cdot \cdot O$ hydrogen bonds between the amino H atoms of one molecule interacting with the methoxy O atoms of a neighbouring molecule. The chains are linked into a three-dimensional architecture by $C-H\cdots\pi$ interactions.

Related literature

For background to the biological activity of related phenanthrene compounds, see: Wang *et al.* (2010); Rostom *et al.* (2011). For related structures, see: Asiri *et al.* (2011*a,b*); Al-Youbi *et al.* (2012).

Experimental

Crystal data

 $\begin{array}{l} C_{24}H_{19}N_{3}O_{2}\\ M_{r}=381.42\\ \text{Monoclinic, }P_{1/c}\\ a=8.9360\ (7)\ \AA\\ b=14.5007\ (11)\ \AA\\ c=14.8074\ (11)\ \AA\\ \beta=103.471\ (8)^{\circ} \end{array}$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2011) $T_{min} = 0.983, T_{max} = 0.991$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.136$ S = 1.034272 reflections 270 parameters Z = 4 Mo K α radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 100 K 0.20 × 0.15 × 0.10 mm

V = 1865.9 (2) Å³

8105 measured reflections 4272 independent reflections 2851 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.25\ e\ \mathring{A}^{-3}\\ &\Delta\rho_{min}=-0.23\ e\ \mathring{A}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1-C6 and C17-C22 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H1\cdotsO1^{i}$	0.95 (2)	2.23 (2)	2.921 (2)	129 (2)
$N2-H2\cdots O2^{i}$	0.90 (3)	2.28 (3)	2.984(2)	135 (2)
$C24 - H24B \cdots Cg1^{ii}$	0.98	2.78	3.538 (2)	135
$C7-H7A\cdots Cg4^{iii}$	0.99	2.92	3.792 (2)	147
Symmetry codes: (i) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}.$	x - 1, -y -	$+\frac{3}{2}, z - \frac{1}{2};$ (ii)	$-x+1, y+\frac{1}{2},$	$-z + \frac{3}{2};$ (iii)

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education

[‡] Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

(Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5212).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.Al-Youbi, A. O., Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, 01027–01028.

- Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M. & Ng, S. W. (2011b). Acta Cryst. E67, o2873.
- Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011a). Acta Cryst. E67, 02449.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Rostom, S. A. F., Faidallah, S. M. & Al Saadi, M. S. (2011). Med. Chem. Res. 20, 1260-1272.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, K., Hu, Y., Liu, Y., Mi, N., Fan, Z., Liu, Y. & Wang, Q. (2010). J. Agric. Food Chem. 58, 12337–12342.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2012). E68, o1118-o1119 [doi:10.1107/S1600536812011129]

3-Amino-1-(3,4-dimethoxyphenyl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile

Abdullah M. Asiri, Hassan M. Faidallah, Khalid A. Alamry, Seik Weng Ng and Edward R. T. Tiekink

Comment

The X-ray crystallographic investigation of the title compound, 3-amino-1-(3,4-dimethoxyphenyl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile (I), was motivated by reports of the biological activity of related compounds (Wang *et al.*, 2010; Rostom *et al.*, 2011) and allied crystal structure investigations (Asiri *et al.*, 2011*a*; Al-Youbi *et al.*, 2012). The molecule of (I) has been observed previously in its 1/19 co-crystal with 2-amino-4-(3,4-dimethoxyphenyl)-5,6-dihydrobenzo[*ha*]quinoline-3-carbonitrile (Asiri *et al.*, 2011*b*).

In (I), Fig. 1, the partially saturated ring adopts a distorted twisted half chair conformation with the C2 atom lying 0.664 (3) Å out of the plane defined by the five remaining atoms [r.m.s. deviation = 0.1429 Å; maximum deviations = 0.1733 (11) Å for the C9 atom and -0.2097 (14) Å for the C10 atom]. The dihedral angle between the benzene rings on either side of this ring = $32.01 (10)^{\circ}$, indicating a significant fold in this part of the molecule. The dimethoxy-substituted benzene ring is almost normal to the plane of the benzene ring to which it is attached, forming a dihedral angle of 72.03 (9)° The O1-and O2-methoxy substituents are each slightly twisted out of the plane of the benzene ring to which they are attached as seen in the values of the C23—O1—C19—C18 and C24—O2—C20—C21 torsion angles of -13.7 (3) and -5.0 (3)°, respectively; they lie to opposite sides of the plane through the benzene ting.

The most prominent feature in the crystal packing is the formation of N—H···O hydrogen bonds whereby the amino-H atoms are connected to the two methoxy-O atoms of a neighbouring molecule leading to a seven-membered {···HNH···OC₂O} synthon linked into twisted supramolecular chains, Fig. 2 and Table 1; the base vector is along [2 0 1]. Clearly, the presence of two oxygen atoms in (I), is sufficient to disrupt the normally formed N—H···N hydrogen bonds between centrosymmetrically related molecules leading to to 12-membered {···HNC₃N}₂ synthons (Asiri *et al.*, 2011*a*; Asiri *et al.*, 2011*b*). Supramolecular chains are sustained in a three-dimensional architecture by C—H···*π* interactions, Fig. 3 and Table 1.

Experimental

A mixture of 3,4-dimethoxybenzaldehyde (1.66 g, 0.01 mmol), 1-tetralone (1.46 g, 0.01 mmol), malononitrile (0.66 g, 0.01 mmol) and ammonium acetate (6.2 g, 0.08 mmol) in absolute ethanol (50 ml) was refluxed for 6 h. The reaction mixture was allowed to cool. The precipitate that formed was filtered, washed with water, dried and recrystallized from ethanol. Yield: 69%, *M*. pt. 533–535 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, $U_{iso}(H) = 1.2$ to $1.5U_{eq}(C)$] and were included in the refinement in the riding model approximation. The N—H atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.88 ± 0.01 Å; their U_{iso} values were refined. Owing to poor

agreement, the (1 15 5) reflection was omitted from the final cycles of refinement.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO* (Agilent, 2011); data reduction: *CrysAlis PRO* (Agilent, 2011); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

The supramolecular chain in (I) sustained by N-H···O hydrogen bonds shown as blue dashed lines.

Figure 3

A view in projection down the *a* axis of the unit-cell contents of (I). The N—H···O hydrogen bonds and C—H··· π interactions are shown as blue and purple dashed lines, respectively.

3-Amino-1-(3,4-dimethoxyphenyl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile

Crystal data	
$C_{24}H_{19}N_{3}O_{2}$ $M_{r} = 381.42$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc $a = 8.9360 (7) \text{ Å}$ $b = 14.5007 (11) \text{ Å}$ $c = 14.8074 (11) \text{ Å}$ $\beta = 103.471 (8)^{\circ}$ $V = 1865.9 (2) \text{ Å}^{3}$ $Z = 4$	F(000) = 800 $D_x = 1.358 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2185 reflections $\theta = 2.4-27.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 K Chip, orange $0.20 \times 0.15 \times 0.10 \text{ mm}$
Data collection	
Agilent SuperNova Dual diffractometer with an Atlas detector Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator	Detector resolution: 10.4041 pixels mm ⁻¹ ω scan Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2011) $T_{min} = 0.983, T_{max} = 0.991$

8105 measured reflections 4272 independent reflections 2851 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$	$\theta_{\max} = 27.6^{\circ}, \ \theta_{\min} = 2.7^{\circ}$ $h = -11 \rightarrow 11$ $k = -18 \rightarrow 17$ $l = -11 \rightarrow 19$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.136$ S = 1.03 4272 reflections 270 parameters 0 restraints	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0526P)^2 + 0.2552P]$ where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant direct methods	$(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.69410 (14)	0.85996 (10)	0.89152 (10)	0.0255 (4)
O2	0.92377 (14)	0.80208 (9)	0.82524 (9)	0.0215 (3)
N1	-0.21440 (18)	0.47271 (12)	0.60427 (12)	0.0271 (4)
N2	-0.0035 (2)	0.62438 (13)	0.51881 (12)	0.0243 (4)
N3	0.31457 (19)	0.75869 (13)	0.50677 (13)	0.0278 (4)
C1	0.1055 (2)	0.47341 (14)	0.82665 (13)	0.0231 (5)
C2	-0.0456 (2)	0.47157 (15)	0.83797 (15)	0.0289 (5)
H2A	-0.1234	0.5058	0.7968	0.035*
C3	-0.0831 (3)	0.42019 (16)	0.90882 (16)	0.0347 (6)
H3	-0.1859	0.4194	0.9160	0.042*
C4	0.0298 (3)	0.37015 (16)	0.96890 (16)	0.0393 (6)
H4	0.0038	0.3338	1.0164	0.047*
C5	0.1807 (3)	0.37300 (15)	0.95975 (15)	0.0350 (6)
Н5	0.2576	0.3388	1.0014	0.042*
C6	0.2208 (2)	0.42536 (15)	0.89025 (14)	0.0279 (5)
C7	0.3846 (2)	0.43614 (15)	0.88204 (15)	0.0313 (5)
H7A	0.4029	0.3973	0.8307	0.038*
H7B	0.4561	0.4162	0.9403	0.038*
C8	0.4127 (2)	0.53735 (15)	0.86299 (14)	0.0273 (5)
H8A	0.3967	0.5760	0.9151	0.033*
H8B	0.5200	0.5459	0.8573	0.033*
C9	0.3017 (2)	0.56644 (14)	0.77347 (13)	0.0215 (4)
C10	0.1525 (2)	0.52829 (14)	0.75366 (13)	0.0207 (4)
C11	0.0532 (2)	0.54618 (13)	0.66663 (13)	0.0182 (4)
C12	0.0953 (2)	0.60554 (13)	0.60093 (13)	0.0189 (4)
C13	0.2426 (2)	0.64665 (13)	0.62557 (13)	0.0186 (4)
C14	0.3445 (2)	0.62742 (13)	0.71120 (13)	0.0198 (4)
C15	-0.0950 (2)	0.50286 (14)	0.63642 (14)	0.0221 (4)
C16	0.2857 (2)	0.70935 (14)	0.56101 (14)	0.0210 (4)
C17	0.4968 (2)	0.67539 (14)	0.73596 (13)	0.0199 (4)

C18	0.5213 (2)	0.74481 (14)	0.80346 (14)	0.0215 (5)
H18	0.4402	0.7623	0.8315	0.026*
C19	0.6633 (2)	0.78845 (13)	0.82984 (13)	0.0193 (4)
C20	0.7852 (2)	0.75935 (13)	0.79148 (13)	0.0182 (4)
C21	0.7588 (2)	0.69338 (14)	0.72295 (14)	0.0241 (5)
H21	0.8394	0.6761	0.6944	0.029*
C22	0.6146 (2)	0.65146 (15)	0.69485 (14)	0.0249 (5)
H22	0.5977	0.6062	0.6471	0.030*
C23	0.5626 (2)	0.90343 (16)	0.91355 (16)	0.0333 (6)
H23A	0.5969	0.9532	0.9583	0.050*
H23B	0.5047	0.8578	0.9405	0.050*
H23C	0.4963	0.9289	0.8568	0.050*
C24	1.0509 (2)	0.76905 (15)	0.79032 (15)	0.0257 (5)
H24A	1.1434	0.8047	0.8181	0.039*
H24B	1.0274	0.7762	0.7227	0.039*
H24C	1.0688	0.7038	0.8063	0.039*
H1	-0.105 (3)	0.5996 (17)	0.5047 (17)	0.044 (7)*
H2	0.028 (3)	0.6568 (18)	0.4750 (18)	0.040 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0178 (7)	0.0281 (8)	0.0307 (8)	0.0001 (6)	0.0057 (6)	-0.0119 (7)
O2	0.0141 (6)	0.0248 (8)	0.0260 (7)	-0.0022 (5)	0.0054 (5)	-0.0058 (6)
N1	0.0207 (9)	0.0277 (10)	0.0327 (10)	-0.0014 (7)	0.0060 (7)	0.0010 (8)
N2	0.0186 (9)	0.0298 (11)	0.0222 (9)	-0.0030(7)	-0.0002 (7)	0.0048 (8)
N3	0.0257 (9)	0.0278 (10)	0.0300 (10)	-0.0031 (7)	0.0065 (8)	0.0015 (9)
C1	0.0304 (11)	0.0185 (11)	0.0196 (10)	-0.0063 (8)	0.0040 (8)	-0.0041 (9)
C2	0.0353 (12)	0.0265 (12)	0.0266 (11)	-0.0058 (9)	0.0111 (9)	-0.0031 (10)
C3	0.0497 (15)	0.0289 (13)	0.0306 (12)	-0.0118 (10)	0.0193 (11)	-0.0060 (10)
C4	0.0641 (17)	0.0315 (14)	0.0255 (12)	-0.0142 (12)	0.0170 (11)	-0.0022 (11)
C5	0.0537 (15)	0.0264 (13)	0.0213 (11)	-0.0054 (11)	0.0016 (10)	0.0002 (10)
C6	0.0400 (13)	0.0228 (12)	0.0179 (10)	-0.0055 (9)	0.0008 (9)	-0.0011 (9)
C7	0.0355 (12)	0.0286 (13)	0.0232 (11)	0.0008 (9)	-0.0063 (9)	0.0025 (10)
C8	0.0278 (11)	0.0302 (12)	0.0203 (10)	-0.0025 (9)	-0.0020 (8)	-0.0014 (10)
C9	0.0222 (10)	0.0198 (11)	0.0200 (10)	0.0011 (8)	-0.0001 (8)	-0.0023 (9)
C10	0.0229 (10)	0.0191 (11)	0.0196 (10)	-0.0005 (8)	0.0038 (8)	-0.0020 (9)
C11	0.0161 (9)	0.0168 (10)	0.0221 (9)	-0.0009 (7)	0.0049 (7)	-0.0037 (8)
C12	0.0163 (9)	0.0192 (10)	0.0202 (9)	0.0017 (7)	0.0025 (7)	-0.0024 (8)
C13	0.0164 (9)	0.0177 (10)	0.0221 (10)	-0.0003 (7)	0.0055 (7)	-0.0015 (8)
C14	0.0163 (9)	0.0206 (10)	0.0223 (10)	0.0021 (8)	0.0036 (8)	-0.0048 (9)
C15	0.0241 (10)	0.0220 (11)	0.0215 (10)	0.0001 (8)	0.0080 (8)	0.0011 (9)
C16	0.0165 (10)	0.0221 (11)	0.0234 (10)	-0.0007 (8)	0.0026 (8)	-0.0029 (9)
C17	0.0155 (9)	0.0217 (10)	0.0206 (10)	0.0007 (8)	0.0001 (7)	0.0006 (9)
C18	0.0152 (9)	0.0264 (11)	0.0229 (10)	0.0026 (8)	0.0042 (8)	-0.0011 (9)
C19	0.0188 (10)	0.0190 (10)	0.0185 (9)	0.0019 (8)	0.0009 (7)	-0.0034 (8)
C20	0.0132 (9)	0.0200 (10)	0.0203 (10)	0.0014 (7)	0.0013 (7)	0.0023 (8)
C21	0.0177 (10)	0.0292 (12)	0.0266 (11)	-0.0009 (8)	0.0078 (8)	-0.0060 (9)
C22	0.0206 (10)	0.0298 (12)	0.0232 (10)	-0.0008 (8)	0.0030 (8)	-0.0078 (9)
C23	0.0241 (11)	0.0366 (14)	0.0410 (13)	0.0009 (9)	0.0109 (9)	-0.0171 (11)

C24	0.0177 (10)	0.0287 (12)	0.0323 (11)	-0.0027 (8)	0.0087 (8)	-0.0074 (10)
Geome	tric parameters (Å	Î, °)				
01—C	19	1.367 (2)		C8—H8B		0.9900
01—C	23	1.437 (2)		C9—C14		1.394 (3)
02—С	20	1.371 (2)		C9—C10		1.410 (3)
02—С	24	1.436 (2)		C10—C11		1.408 (2)
N1—C	15	1.149 (2)		C11—C12		1.414 (3)
N2—C	12	1.354 (2)		C11—C15		1.440 (3)
N2—H	[1	0.95 (2)		C12—C13		1.413 (3)
N2—H	[2	0.90 (3)		C13—C14		1.406 (2)
N3—C	16	1.149 (3)		C13—C16		1.435 (3)
C1C	2	1.400 (3)		C14—C17		1.496 (3)
C1—C	6	1.408 (3)		C17—C22		1.377 (3)
C1—C	10	1.479 (3)		C17—C18		1.400 (3)
С2—С	3	1.390 (3)		C18—C19		1.390 (3)
С2—Н	2A	0.9500		C18—H18		0.9500
С3—С	4	1.384 (3)		C19—C20		1.405 (3)
С3—Н	3	0.9500		C20—C21		1.374 (3)
С4—С	5	1.387 (3)		C21—C22		1.398 (3)
С4—Н	4	0.9500		C21—H21		0.9500
С5—С	6	1.391 (3)		С22—Н22		0.9500
С5—Н	5	0.9500		С23—Н23А		0.9800
С6—С	7	1.504 (3)		С23—Н23В		0.9800
С7—С	8	1.526 (3)		С23—Н23С		0.9800
С7—Н	7A	0.9900		C24—H24A		0.9800
С7—Н	7B	0.9900		C24—H24B		0.9800
С8—С	9	1.518 (2)		C24—H24C		0.9800
С8—Н	8A	0.9900				
C19—0	O1—C23	115.90 (15	5)	C12—C11—C15		115.13 (16)
C20—0	O2—C24	116.20 (15	5)	N2—C12—C13		121.33 (19)
C12—1	N2—H1	120.6 (15))	N2—C12—C11		121.24 (17)
C12—1	N2—H2	120.2 (15)		C13—C12—C11		117.39 (16)
H1—N	2—H2	119 (2)		C14—C13—C12		121.20 (18)
С2—С	1—C6	119.1 (2)		C14—C13—C16		120.53 (17)
С2—С	1—C10	122.94 (18	8)	C12—C13—C16		118.26 (16)
C6—C	1—C10	117.84 (19	<i>)</i>)	C9—C14—C13		120.14 (17)
С3—С	2—C1	120.6 (2)		C9—C14—C17		120.47 (16)
С3—С	2—H2A	119.7		C13—C14—C17		119.35 (18)
C1—C	2—H2A	119.7		N1—C15—C11		173.3 (2)
C4—C	3—C2	119.9 (2)		N3—C16—C13		177.17 (19)
C4—C	3—Н3	120.0		C22—C17—C18		119.25 (18)
С2—С	3—Н3	120.0		C22—C17—C14		121.31 (18)
С3—С	4—C5	120.0 (2)		C18—C17—C14		119.43 (18)
C3—C	4—H4	120.0		C19—C18—C17		120.58 (19)
С5—С	4—H4	120.0		C19—C18—H18		119.7
C4—C	5—C6	120.8 (2)		C17—C18—H18		119.7
C4—C	5—H5	119.6		U1—C19—C18		124.16 (18)

supplementary materials

С6—С5—Н5	119.6	O1—C19—C20	116.35 (16)
C5—C6—C1	119.4 (2)	C18—C19—C20	119.49 (18)
C5—C6—C7	122.66 (19)	O2—C20—C21	124.66 (18)
C1—C6—C7	117.94 (19)	O2—C20—C19	115.86 (17)
C6-C7-C8	108.65 (18)	C21—C20—C19	119.47 (17)
C6—C7—H7A	110.0	C20—C21—C22	120.66 (19)
C8—C7—H7A	110.0	C20—C21—H21	119.7
C6—C7—H7B	110.0	C22—C21—H21	119.7
C8—C7—H7B	110.0	C17 - C22 - C21	120.35 (19)
H7A—C7—H7B	108.3	С17—С22—Н22	119.8
C9—C8—C7	109.05 (16)	C21—C22—H22	119.8
C9—C8—H8A	109.9	$01-C_{23}-H_{23}A$	109.5
C7—C8—H8A	109.9	$01-C^{23}-H^{23}B$	109.5
C9—C8—H8B	109.9	H23A-C23-H23B	109.5
C7-C8-H8B	109.9	$01 - C^{23} - H^{23}C$	109.5
H8A - C8 - H8B	108.3	$H_{23}A = C_{23} = H_{23}C$	109.5
C14 - C9 - C10	120.23 (16)	$H_{23B} = C_{23} = H_{23C}$	109.5
C14 - C9 - C8	120.23(10) 121.98(17)	$\Omega^2 - C^2 - H^2 \Delta$	109.5
C10-C9-C8	121.90(17) 117.78(18)	02 - 024 - H24R	109.5
$C_{11} - C_{10} - C_{9}$	118 79 (18)	$H_{24} = C_{24} = H_{24} = H_{24}$	109.5
$C_{11} = C_{10} = C_{10}$	122 85 (17)	$\Omega^2 - C^2 - H^2 4C$	109.5
C_{0} C_{10} C_{1}	118 33 (16)	$H_{24} = C_{24} = H_{24} C_{24}$	109.5
C_{10} C_{11} C_{12}	122.02 (16)	$H_{24B} = C_{24} = H_{24C}$	109.5
$C_{10} = C_{11} = C_{12}$	122.02(10) 122.70(18)	11240-024-11240	109.5
00-011-015	122.79 (10)		
C6—C1—C2—C3	-2.5(3)	C11—C12—C13—C14	1.5 (3)
C10-C1-C2-C3	-178.78(19)	N2-C12-C13-C16	-0.1(3)
C1—C2—C3—C4	-0.1 (3)	C11—C12—C13—C16	-178.12(18)
C2—C3—C4—C5	1.5 (3)	C10—C9—C14—C13	-4.1 (3)
C3—C4—C5—C6	-0.4(3)	C8—C9—C14—C13	174.73 (19)
C4—C5—C6—C1	-2.2(3)	C10-C9-C14-C17	173.87 (19)
C4—C5—C6—C7	175.3 (2)	C8-C9-C14-C17	-7.3 (3)
C2-C1-C6-C5	3.6 (3)	C12—C13—C14—C9	0.4 (3)
C10-C1-C6-C5	-179.94(18)	C16—C13—C14—C9	-179.99(19)
C_{2} C_{1} C_{6} C_{7}	-174.09(19)	C12-C13-C14-C17	-177.60(18)
C10-C1-C6-C7	2.4 (3)	C16—C13—C14—C17	2.0 (3)
C5-C6-C7-C8	-135.7(2)	C9-C14-C17-C22	107.8(2)
C1 - C6 - C7 - C8	41 9 (2)	C_{13} C_{14} C_{17} C_{22}	-742(3)
C6-C7-C8-C9	-595(2)	C9-C14-C17-C18	-71.0(3)
C7-C8-C9-C14	-1432(2)	C13 - C14 - C17 - C18	1069(2)
C7 - C8 - C9 - C10	357(3)	C^{22} C^{17} C^{18} C^{19}	-0.9(3)
C_{14} C_{9} C_{10} C_{11}	58(3)	C_{14} C_{17} C_{18} C_{19}	177.97(18)
C_{8} C_{9} C_{10} C_{11}	-173 11 (18)	$C^{23} - 01 - C^{19} - C^{18}$	-137(3)
$C_{14} - C_{9} - C_{10} - C_{10}$	-17240(19)	$C_{23} = 01 = C_{19} = C_{20}$	165 87 (18)
C8 - C9 - C10 - C1	87(3)	C_{17} C_{18} C_{19} C_{20}	176 45 (17)
C_{2} C_{1} C_{10} C_{11}	-315(3)	C17 - C18 - C19 - C20	-31(3)
C_{6} C_{1} C_{10} C_{11}	152 19 (19)	$C_{24} = 0^{2} = C_{20} = C_{21}^{21}$	-50(3)
C_{2} C_{1} C_{10} C_{10} C_{10}	146.6 (2)	$C_{24} = 02 = 020 = 021$	176 54 (17)
C_{6}	-297(3)	01 - C19 - C20 - O2	4 2 (2)
		01 017 020 02	

supplementary materials

		G10 G10 G00 00	17(20 (17)
C9—C10—C11—C12	-3.9(3)	C18 - C19 - C20 - O2	-1/6.20 (1/)
C1-C10-C11-C12	174.20 (19)	O1-C19-C20-C21	-174.28 (17)
C9—C10—C11—C15	173.50 (19)	C18-C19-C20-C21	5.3 (3)
C1—C10—C11—C15	-8.4 (3)	O2—C20—C21—C22	178.03 (18)
C10-C11-C12-N2	-177.79 (19)	C19—C20—C21—C22	-3.6 (3)
C15—C11—C12—N2	4.6 (3)	C18—C17—C22—C21	2.6 (3)
C10-C11-C12-C13	0.3 (3)	C14—C17—C22—C21	-176.20 (18)
C15—C11—C12—C13	-177.29 (18)	C20—C21—C22—C17	-0.4 (3)
N2—C12—C13—C14	179.56 (19)		

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1-C6 and C17-C22 rings, respectively.

D—H···A	D—H	H…A	D····A	D—H···A	
N2—H1···O1 ⁱ	0.95 (2)	2.23 (2)	2.921 (2)	129 (2)	
N2— $H2$ ···O2 ⁱ	0.90 (3)	2.28 (3)	2.984 (2)	135 (2)	
C24—H24 <i>B</i> … <i>Cg</i> 1 ⁱⁱ	0.98	2.78	3.538 (2)	135	
C7—H7 <i>A</i> ··· <i>Cg</i> 4 ⁱⁱⁱ	0.99	2.92	3.792 (2)	147	

Symmetry codes: (i) *x*-1, -*y*+3/2, *z*-1/2; (ii) -*x*+1, *y*+1/2, -*z*+3/2; (iii) -*x*+1, *y*-1/2, -*z*+3/2.